Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.559
Filtrar
1.
J Virol ; 97(10): e0093823, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37792003

RESUMO

IMPORTANCE: Human norovirus (HuNoV) is highly infectious and can result in severe illnesses in the elderly and children. So far, there is no effective antiviral drug to treat HuNoV infection, and thus, the development of HuNoV vaccines is urgent. However, NoV evolves rapidly, and currently, at least 10 genogroups with numerous genotypes have been found. The genetic diversity of NoV and the lack of cross-protection between different genotypes pose challenges to the development of broadly protective vaccines. In this study, guided by structural alignment between GI.1 and GII.4 HuNoV VP1 proteins, several chimeric-type virus-like particles (VLPs) were designed through surface-exposed loop grafting. Mouse immunization studies show that two of the designed chimeric VLPs induced cross-immunity against both GI.1 and GII.4 HuNoVs. To our knowledge, this is the first designed chimeric VLPs that can induce cross-immune activities across different genogroups of HuNoV, which provides valuable strategies for the development of cross-reactive HuNoV vaccines.


Assuntos
Infecções por Caliciviridae , Epitopos , Genótipo , Norovirus , Vacinas Virais , Vírion , Animais , Humanos , Camundongos , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/prevenção & controle , Infecções por Caliciviridae/virologia , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Imunização , Norovirus/química , Norovirus/classificação , Norovirus/genética , Norovirus/imunologia , Vacinas Virais/química , Vacinas Virais/genética , Vacinas Virais/imunologia , Quimera/genética , Quimera/imunologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Vírion/química , Vírion/genética , Vírion/imunologia
2.
J Virol ; 97(9): e0071023, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37681958

RESUMO

The envelope (Env) glycoproteins on HIV-1 virions are the sole target of broadly neutralizing antibodies (bNAbs) and the focus of vaccines. However, many cross-reactive conserved epitopes are often occluded on virus particles, contributing to the evasion of humoral immunity. This study aimed to identify the Env epitopes that are exposed/occluded on HIV-1 particles and to investigate the mechanisms contributing to their masking. Using a flow cytometry-based assay, three HIV-1 isolates, and a panel of antibodies, we show that only select epitopes, including V2i, the gp120-g41 interface, and gp41-MPER, are accessible on HIV-1 particles, while V3, V2q, and select CD4bs epitopes are masked. These epitopes become accessible after allosteric conformational changes are induced by the pre-binding of select Abs, prompting us to test if similar conformational changes are required for these Abs to exhibit their neutralization capability. We tested HIV-1 neutralization where the virus-mAb mix was pre-incubated/not pre-incubated for 1 hour prior to adding the target cells. Similar levels of neutralization were observed under both assay conditions, suggesting that the interaction between virus and target cells sensitizes the virions for neutralization via bNAbs. We further show that lectin-glycan interactions can also expose these epitopes. However, this effect is dependent on the lectin specificity. Given that, bNAbs are ideal for providing sterilizing immunity and are the goal of current HIV-1 vaccine efforts, these data offer insight on how HIV-1 may occlude these vulnerable epitopes from the host immune response. In addition, the findings can guide the formulation of effective antibody combinations for therapeutic use. IMPORTANCE The human immunodeficiency virus (HIV-1) envelope (Env) glycoprotein mediates viral entry and is the sole target of neutralizing antibodies. Our data suggest that antibody epitopes including V2q (e.g., PG9, PGT145), CD4bs (e.g., VRC01, 3BNC117), and V3 (2219, 2557) are masked on HIV-1 particles. The PG9 and 2219 epitopes became accessible for binding after conformational unmasking was induced by the pre-binding of select mAbs. Attempts to understand the masking mechanism led to the revelation that interaction between virus and host cells is needed to sensitize the virions for neutralization by broadly neutralizing antibodies (bNAbs). These data provide insight on how bNAbs may gain access to these occluded epitopes to exert their neutralization effects and block HIV-1 infection. These findings have important implications for the way we evaluate the neutralizing efficacy of antibodies and can potentially guide vaccine design.


Assuntos
Anticorpos Amplamente Neutralizantes , Epitopos de Linfócito B , Anticorpos Anti-HIV , Infecções por HIV , HIV-1 , Interações entre Hospedeiro e Microrganismos , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/química , HIV-1/imunologia , HIV-1/metabolismo , Lectinas/metabolismo , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/metabolismo , Vacinas contra a AIDS/química , Vacinas contra a AIDS/imunologia , Vírion/química , Vírion/imunologia , Vírion/metabolismo , Polissacarídeos/metabolismo
3.
J Virol ; 97(3): e0185722, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36815832

RESUMO

Human immunodeficiency virus (HIV-1) entry into cells involves triggering of the viral envelope glycoprotein (Env) trimer ([gp120/gp41]3) by the primary receptor, CD4, and coreceptors, CCR5 or CXCR4. The pretriggered (State-1) conformation of the mature (cleaved) Env is targeted by broadly neutralizing antibodies (bNAbs), which are inefficiently elicited compared with poorly neutralizing antibodies (pNAbs). Here, we characterize variants of the moderately triggerable HIV-1AD8 Env on virions produced by an infectious molecular proviral clone; such virions contain more cleaved Env than pseudotyped viruses. We identified three types of cleaved wild-type AD8 Env trimers on virions: (i) State-1-like trimers preferentially recognized by bNAbs and exhibiting strong subunit association; (ii) trimers recognized by pNAbs directed against the gp120 coreceptor-binding region and exhibiting weak, detergent-sensitive subunit association; and (iii) a minor gp41-only population. The first Env population was enriched and the other Env populations reduced by introducing State-1-stabilizing changes in the AD8 Env or by treatment of the virions with crosslinker or the State-1-preferring entry inhibitor, BMS-806. These stabilized AD8 Envs were also more resistant to gp120 shedding induced by a CD4-mimetic compound or by incubation on ice. Conversely, a State-1-destabilized, CD4-independent AD8 Env variant exhibited weaker bNAb recognition and stronger pNAb recognition. Similar relationships between Env triggerability and antigenicity/shedding propensity on virions were observed for other HIV-1 strains. State-1 Envs on virions can be significantly enriched by minimizing the adventitious incorporation of uncleaved Env; stabilizing the pretriggered conformation by Env modification, crosslinking or BMS-806 treatment; strengthening Env subunit interactions; and using CD4-negative producer cells. IMPORTANCE Efforts to develop an effective HIV-1 vaccine have been frustrated by the inability to elicit broad neutralizing antibodies that recognize multiple virus strains. Such antibodies can bind a particular shape of the HIV-1 envelope glycoprotein trimer, as it exists on a viral membrane but before engaging receptors on the host cell. Here, we establish simple yet powerful assays to characterize the envelope glycoproteins in a natural context on virus particles. We find that, depending on the HIV-1 strain, some envelope glycoproteins change shape and fall apart, creating decoys that can potentially divert the host immune response. We identify requirements to keep the relevant envelope glycoprotein target for broad neutralizing antibodies intact on virus-like particles. These studies suggest strategies that should facilitate efforts to produce and use virus-like particles as vaccine immunogens.


Assuntos
HIV-1 , Vacinas , Vírion , Produtos do Gene env do Vírus da Imunodeficiência Humana , Humanos , Anticorpos Amplamente Neutralizantes/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Anticorpos Anti-HIV/imunologia , Conformação Proteica , Vacinas/metabolismo , Vacinas/farmacologia , Vírion/imunologia , Estabilidade Proteica , Desenvolvimento de Vacinas
4.
J Virol ; 96(16): e0062722, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35924923

RESUMO

Rotavirus live-attenuated vaccines, both mono- and pentavalent, generate broadly heterotypic protection. B-cells isolated from adults encode neutralizing antibodies, some with affinity for VP5*, that afford broad protection in mice. We have mapped the epitope of one such antibody by determining the high-resolution cryo-EM structure of its antigen-binding fragment (Fab) bound to the virion of a candidate vaccine strain, CDC-9. The Fab contacts both the distal end of a VP5* ß-barrel domain and the two VP8* lectin-like domains at the tip of a projecting spike. Its interactions with VP8* do not impinge on the likely receptor-binding site, suggesting that the mechanism of neutralization is at a step subsequent to initial attachment. We also examined structures of CDC-9 virions from two different stages of serial passaging. Nearly all the VP4 (cleaved to VP8*/VP5*) spikes on particles from the earlier passage (wild-type isolate) had transitioned from the "upright" conformation present on fully infectious virions to the "reversed" conformation that is probably the end state of membrane insertion, unable to mediate penetration, consistent with the very low in vitro infectivity of the wild-type isolate. About half the VP4 spikes were upright on particles from the later passage, which had recovered substantial in vitro infectivity but had acquired an attenuated phenotype in neonatal rats. A mutation in VP4 that occurred during passaging appears to stabilize the interface at the apex of the spike and could account for the greater stability of the upright spikes on the late-passage, attenuated isolate. IMPORTANCE Rotavirus live-attenuated vaccines generate broadly heterotypic protection, and B-cells isolated from adults encode antibodies that are broadly protective in mice. Determining the structural and mechanistic basis of broad protection can contribute to understanding the current limitations of vaccine efficacy in developing countries. The structure of an attenuated human rotavirus isolate (CDC-9) bound with the Fab fragment of a broadly heterotypic protective antibody shows that protection is probably due to inhibition of the conformational transition in the viral spike protein (VP4) critical for viral penetration, rather than to inhibition of receptor binding. A comparison of structures of CDC-9 virus particles at two stages of serial passaging supports a proposed mechanism for initial steps in rotavirus membrane penetration.


Assuntos
Anticorpos Amplamente Neutralizantes , Proteínas do Capsídeo , Epitopos de Linfócito B , Rotavirus , Vacinas Atenuadas , Vírion , Animais , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Amplamente Neutralizantes/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/ultraestrutura , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Camundongos , Conformação Proteica , Ratos , Rotavirus/química , Rotavirus/classificação , Rotavirus/imunologia , Rotavirus/fisiologia , Inoculações Seriadas , Vacinas Atenuadas/química , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/metabolismo , Vírion/imunologia , Vírion/metabolismo , Vírion/ultraestrutura
5.
Cell Rep ; 38(7): 110388, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172138

RESUMO

Powassan virus (POWV) is a tick-borne pathogen for which humans are an incidental host. POWV infection can be fatal or result in long-term neurological sequelae; however, there are no approved vaccinations for POWV. Integral to efficacious vaccine development is the identification of correlates of protection, which we accomplished in this study by utilizing a murine model of POWV infection. Using POWV lethal and sub-lethal challenge models, we show that (1) robust B and T cell responses are necessary for immune protection, (2) POWV lethality can be attributed to both viral- and host-mediated drivers of disease, and (3) knowledge of the immune correlates of protection against POWV can be applied in a virus-like particle (VLP)-based vaccination approach that provides protection from lethal POWV challenge. Identification of these immune protection factors is significant as it will aid in the rational design of POWV vaccines.


Assuntos
Linfócitos B/imunologia , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/prevenção & controle , Linfócitos T/imunologia , Vacinação , Vírion/imunologia , Animais , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Modelos Animais de Doenças , Encefalite Transmitida por Carrapatos/virologia , Interações Hospedeiro-Patógeno/imunologia , Camundongos Endogâmicos C57BL
6.
Nat Commun ; 13(1): 868, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165285

RESUMO

SARS-CoV-2 infection is a major global public health concern with incompletely understood pathogenesis. The SARS-CoV-2 spike (S) glycoprotein comprises a highly conserved free fatty acid binding pocket (FABP) with unknown function and evolutionary selection advantage1,2. Deciphering FABP impact on COVID-19 progression is challenged by the heterogenous nature and large molecular variability of live virus. Here we create synthetic minimal virions (MiniVs) of wild-type and mutant SARS-CoV-2 with precise molecular composition and programmable complexity by bottom-up assembly. MiniV-based systematic assessment of S free fatty acid (FFA) binding reveals that FABP functions as an allosteric regulatory site enabling adaptation of SARS-CoV-2 immunogenicity to inflammation states via binding of pro-inflammatory FFAs. This is achieved by regulation of the S open-to-close equilibrium and the exposure of both, the receptor binding domain (RBD) and the SARS-CoV-2 RGD motif that is responsible for integrin co-receptor engagement. We find that the FDA-approved drugs vitamin K and dexamethasone modulate S-based cell binding in an FABP-like manner. In inflammatory FFA environments, neutralizing immunoglobulins from human convalescent COVID-19 donors lose neutralization activity. Empowered by our MiniV technology, we suggest a conserved mechanism by which SARS-CoV-2 dynamically couples its immunogenicity to the host immune response.


Assuntos
COVID-19/imunologia , Ácidos Graxos/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vírion/imunologia , Células A549 , Sítio Alostérico/genética , Sequência de Aminoácidos , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Sítios de Ligação/genética , COVID-19/metabolismo , COVID-19/virologia , Células Cultivadas , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Proteínas de Ligação a Ácido Graxo/imunologia , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Humanos , Células MCF-7 , Microscopia Confocal/métodos , Ligação Proteica , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Homologia de Sequência de Aminoácidos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Vírion/metabolismo , Vírion/ultraestrutura
7.
Viruses ; 14(2)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35215941

RESUMO

Flavivirus outbreaks require fast and reliable diagnostics that can be easily adapted to newly emerging and re-emerging flaviviruses. Due to the serological cross-reactivity among flavivirus antibodies, neutralization tests (NT) are considered the gold standard for sero-diagnostics. Here, we first established wild-type single-round infectious virus replicon particles (VRPs) by packaging a yellow fever virus (YFV) replicon expressing Gaussia luciferase (Gluc) with YFV structural proteins in trans using a double subgenomic Sindbis virus (SINV) replicon. The latter expressed the YFV envelope proteins prME via the first SINV subgenomic promoter and the capsid protein via a second subgenomic SINV promoter. VRPs were produced upon co-electroporation of replicon and packaging RNA. Introduction of single restriction enzyme sites in the packaging construct flanking the prME sequence easily allowed to exchange the prME moiety resulting in chimeric VRPs that have the surface proteins of other flaviviruses including dengue virus 1--4, Zika virus, West Nile virus, and tick-borne encephalitis virus. Besides comparing the YF-VRP based NT assay to a YF reporter virus NT assay, we analyzed the neutralization efficiencies of different human anti-flavivirus sera or a monoclonal antibody against all established VRPs. The assays were performed in a 96-well high-throughput format setting with Gluc as readout in comparison to classical plaque reduction NTs indicating that the VRP-based NT assays are suitable for high-throughput analyses of neutralizing flavivirus antibodies.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Flavivirus/imunologia , Ensaios de Triagem em Larga Escala/métodos , Reações Cruzadas , Flavivirus/classificação , Flavivirus/genética , Flavivirus/fisiologia , Genes Reporter , Luciferases/genética , Luciferases/metabolismo , Testes de Neutralização , Replicon , Vírus Sindbis/genética , Vírus Sindbis/imunologia , Vírus Sindbis/fisiologia , Vírion/genética , Vírion/imunologia , Vírion/fisiologia , Vírus da Febre Amarela/genética , Vírus da Febre Amarela/imunologia , Vírus da Febre Amarela/fisiologia
8.
Nat Commun ; 13(1): 630, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110562

RESUMO

Broadly neutralizing antibodies (bNAbs) targeting the HIV-1 envelope glycoprotein (Env) are promising molecules for therapeutic or prophylactic interventions. Beyond neutralization, bNAbs exert Fc-dependent functions including antibody-dependent cellular cytotoxicity and activation of the complement. Here, we show that a subset of bNAbs targeting the CD4 binding site and the V1/V2 or V3 loops inhibit viral release from infected cells. We combined immunofluorescence, scanning electron microscopy, transmission electron microscopy and immunogold staining to reveal that some bNAbs form large aggregates of virions at the surface of infected cells. This activity correlates with the capacity of bNAbs to bind to Env at the cell surface and to neutralize cell-free viral particles. We further show that antibody bivalency is required for viral retention, and that aggregated virions are neutralized. We have thus identified an additional antiviral activity of bNAbs, which block HIV-1 release by tethering viral particles at the surface of infected cells.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Vírion/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Anticorpos Amplamente Neutralizantes , Linhagem Celular , Epitopos , Infecções por HIV/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Linfócitos T , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
9.
JAMA Netw Open ; 5(1): e2142210, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34994793

RESUMO

Importance: A surge of COVID-19 occurred from March to June 2021, in New Delhi, India, linked to the B.1.617.2 (Delta) variant of SARS-CoV-2. COVID-19 vaccines were rolled out for health care workers (HCWs) starting in January 2021. Objective: To assess the incidence density of reinfection among a cohort of HCWs and estimate the effectiveness of the inactivated whole virion vaccine BBV152 against reinfection. Design, Setting, and Participants: This was a retrospective cohort study among HCWs working at a tertiary care center in New Delhi, India. Exposures: Vaccination with 0, 1, or 2 doses of BBV152. Main Outcomes and Measures: The HCWs were categorized as fully vaccinated (with 2 doses and ≥15 days after the second dose), partially vaccinated (with 1 dose or 2 doses with <15 days after the second dose), or unvaccinated. The incidence density of COVID-19 reinfection per 100 person-years was computed, and events from March 3, 2020, to June 18, 2021, were included for analysis. Unadjusted and adjusted hazard ratios (HRs) were estimated using a Cox proportional hazards model. Estimated vaccine effectiveness (1 - adjusted HR) was reported. Results: Among 15 244 HCWs who participated in the study, 4978 (32.7%) were diagnosed with COVID-19. The mean (SD) age was 36.6 (10.3) years, and 55.0% were male. The reinfection incidence density was 7.26 (95% CI: 6.09-8.66) per 100 person-years (124 HCWs [2.5%], total person follow-up period of 1696 person-years as time at risk). Fully vaccinated HCWs had lower risk of reinfection (HR, 0.14 [95% CI, 0.08-0.23]), symptomatic reinfection (HR, 0.13 [95% CI, 0.07-0.24]), and asymptomatic reinfection (HR, 0.16 [95% CI, 0.05-0.53]) compared with unvaccinated HCWs. Accordingly, among the 3 vaccine categories, reinfection was observed in 60 of 472 (12.7%) of unvaccinated (incidence density, 18.05 per 100 person-years; 95% CI, 14.02-23.25), 39 of 356 (11.0%) of partially vaccinated (incidence density 15.62 per 100 person-years; 95% CI, 11.42-21.38), and 17 of 1089 (1.6%) fully vaccinated (incidence density 2.18 per 100 person-years; 95% CI, 1.35-3.51) HCWs. The estimated effectiveness of BBV152 against reinfection was 86% (95% CI, 77%-92%); symptomatic reinfection, 87% (95% CI, 76%-93%); and asymptomatic reinfection, 84% (95% CI, 47%-95%) among fully vaccinated HCWs. Partial vaccination was not associated with reduced risk of reinfection. Conclusions and Relevance: These findings suggest that BBV152 was associated with protection against both symptomatic and asymptomatic reinfection in HCWs after a complete vaccination schedule, when the predominant circulating variant was B.1.617.2.


Assuntos
COVID-19/epidemiologia , Pessoal de Saúde , Reinfecção , SARS-CoV-2 , Adulto , COVID-19/etiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Estudos de Coortes , Feminino , Humanos , Imunogenicidade da Vacina , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Inquéritos e Questionários , Centros de Atenção Terciária , Vacinas de Produtos Inativados/administração & dosagem , Vírion/imunologia , Adulto Jovem
10.
Lancet Infect Dis ; 22(3): 349-356, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34826383

RESUMO

BACKGROUND: BBV152 is a whole-virion inactivated SARS-CoV-2 vaccine that has been deployed in India. The results of the phase 3 trial have shown clinical efficacy of BBV152. We aimed to evaluate the effectiveness of BBV152 against symptomatic RT-PCR-confirmed SARS-CoV-2 infection. METHODS: We conducted a test-negative, case-control study among employees of the All India Institute of Medical Sciences (a tertiary care hospital in New Delhi, India), who had symptoms suggestive of COVID-19 and had an RT-PCR test for SARS-CoV-2 during the peak of the second wave of the COVID-19 pandemic in India between April 15 and May 15, 2021. Cases (test-positives) and controls (test-negatives) were matched (1:1) on the basis of age and gender. The odds of vaccination with BBV152 were compared between cases and controls and adjusted for level of occupational exposure (to COVID-19), previous SARS-CoV-2 infection, and calendar time, using conditional logistic regression. The primary outcome was effectiveness of two doses of BBV152 (with the second dose received at least 14 days before testing) in reducing the odds of symptomatic RT-PCR-confirmed SARS-CoV-2 infection, expressed as (1 - odds ratio) × 100%. FINDINGS: Between April 15 and May 15, 2021, 3732 individuals had an RT-PCR test. Of these, 2714 symptomatic employees had data on vaccination status, and 1068 matched case-control pairs were available for analysis. The adjusted effectiveness of BBV152 against symptomatic COVID-19 after two doses administered at least 14 days before testing was 50% (95% CI 33-62; p<0·0001). The adjusted effectiveness of two doses administered at least 28 days before testing was 46% (95% CI 22-62) and administered at least 42 days before testing was 57% (21-76). After excluding participants with previous SARS-CoV-2 infections, the adjusted effectiveness of two doses administered at least 14 days before testing was 47% (95% CI 29-61). INTERPRETATION: This study shows the effectiveness of two doses of BBV152 against symptomatic COVID-19 in the context of a huge surge in cases, presumably dominated by the potentially immune-evasive delta (B.1.617.2) variant of SARS-CoV-2. Our findings support the ongoing roll-out of this vaccine to help control the spread of SARS-CoV-2, while continuing the emphasis on adherence to non-pharmacological measures. FUNDING: None. TRANSLATION: For the Hindi translation of the abstract see Supplementary Materials section.


Assuntos
Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Vacinas de Produtos Inativados , Adulto , Teste de Ácido Nucleico para COVID-19 , Estudos de Casos e Controles , Humanos , Índia , Pessoa de Meia-Idade , Vírion/imunologia
11.
J Virol ; 96(2): e0168921, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34730392

RESUMO

The low abundance of envelope spikes and the inability of IgG to aggregate virions render HIV-1 an inadequate target for antibody-mediated clearance by phagocytes. In an attempt to improve the ability of antibody to mediate the internalization of HIV-1 virions, we generated multimers of the broadly neutralizing HIV-1-specific monoclonal antibody (MAb) VRC01 using site-directed mutagenesis of the Fc segment. We then measured virion internalization using primary human monocytes and neutrophils. We found that, in the absence of complement, immune complexes consisting of HIV-1 virions and VRC01 multimers were slightly more efficiently internalized than were complexes formed with monomeric VRC01. The presence of complement, however, greatly augmented internalization of immune complexes formed with the multimeric MAb but had little impact on monomeric MAb-mediated internalization. Multimerization and the presence of complement overcome the limited ability of monomeric antibody to mediate internalization of HIV-1 virions and may thus provide a therapeutic approach to clearing virus. IMPORTANCE Antibody-mediated internalization of HIV-1 by phagocytes, a potential mechanism for clearing virus, is very inefficient. In an effort to improve viral clearance, we produced a multimeric form of the broadly neutralizing monoclonal antibody VRC01. We found that VRC01 antibody multimers (primarily hexamers) were only slightly more efficient in mediating HIV-1 internalization than was monomeric VRC01. However, the addition of complement resulted in substantially greater internalization of multimer-opsonized virus. In contrast, complement had little if any impact on internalization of monomer-opsonized virus. Therefore, antibody multimerization in combination with complement may overcome the limited ability of monomeric antibody to mediate internalization of HIV-1 virions. Our findings may provide a therapeutic approach to clearing virus.


Assuntos
Proteínas do Sistema Complemento/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Fagocitose/imunologia , Vírion/imunologia , Complexo Antígeno-Anticorpo/química , Complexo Antígeno-Anticorpo/genética , Complexo Antígeno-Anticorpo/imunologia , Anticorpos Amplamente Neutralizantes/química , Anticorpos Amplamente Neutralizantes/genética , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/genética , Proteína gp41 do Envelope de HIV/imunologia , Humanos , Monócitos/imunologia , Mutação , Neutrófilos/imunologia , Multimerização Proteica , Receptores Fc/genética , Receptores Fc/imunologia
12.
Virology ; 565: 13-21, 2022 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-34626907

RESUMO

Eastern equine encephalitis virus (EEEV), western equine encephalitis virus (WEEV) and Venezuelan equine encephalitis virus (VEEV) can cause fatal encephalitis in humans and equids. Some MAbs to the E1 glycoprotein are known to be cross-reactive, weakly neutralizing in vitro but can protect from disease in animal models. We investigated the mechanism of neutralization of VEEV infection by the broadly cross-reactive E1-specific MAb 1A4B-6. 1A4B-6 protected 3-week-old Swiss Webster mice prophylactically from lethal VEEV challenge. Likewise, 1A4B-6 inhibited virus growth in vitro at a pre-attachment step after virions were incubated at 37 °C and inhibited virus-mediated cell fusion. Amino acid residue N100 in the fusion loop of E1 protein was identified as critical for binding. The potential to elicit broadly cross-reactive MAbs with limited virus neutralizing activity in vitro but that can inhibit virus entry and protect animals from infection merits further exploration for vaccine and therapeutic developmental research.


Assuntos
Anticorpos Antivirais/imunologia , Vírus da Encefalite Equina Venezuelana/imunologia , Vírus da Encefalite Equina Venezuelana/metabolismo , Encefalomielite Equina Venezuelana/imunologia , Encefalomielite Equina Venezuelana/virologia , Proteínas do Envelope Viral/imunologia , Replicação Viral/efeitos dos fármacos , Alphavirus/imunologia , Infecções por Alphavirus/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Linhagem Celular , Chlorocebus aethiops , Reações Cruzadas , Encefalomielite Equina Venezuelana/terapia , Glicoproteínas/imunologia , Imunoterapia , Camundongos , Ligação Proteica , Células Vero , Proteínas do Envelope Viral/metabolismo , Vírion/imunologia , Vírion/metabolismo
13.
Front Immunol ; 12: 739837, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721406

RESUMO

We have developed a new binary epitope-presenting CVP platform based on bamboo mosaic virus (BaMV) by using the sortase A (SrtA)-mediated ligation technology. The reconstructed BaMV genome harbors two modifications: 1) a coat protein (CP) with N-terminal extension of the tobacco etch virus (TEV) protease recognition site plus 4 extra glycine (G) residues as the SrtA acceptor; and 2) a TEV protease coding region replacing that of the triple-gene-block proteins. Inoculation of such construct, pKB5G, on Nicotiana benthamiana resulted in the efficient production of filamentous CVPs ready for SrtA-mediated ligation with desired proteins. The second part of the binary platform includes an expression vector for the bacterial production of donor proteins. We demonstrated the applicability of the platform by using the recombinant envelope protein domain III (rEDIII) of Japanese encephalitis virus (JEV) as the antigen. Up to 40% of the BaMV CP subunits in each CVP were loaded with rEDIII proteins in 1 min. The rEDIII-presenting BaMV CVPs (BJLPET5G) could be purified using affinity chromatography. Immunization assays confirmed that BJLPET5G could induce the production of neutralizing antibodies against JEV infections. The binary platform could be adapted as a useful alternative for the development and mass production of vaccine candidates.


Assuntos
Aminoaciltransferases/metabolismo , Antígenos Virais/administração & dosagem , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Vírus da Encefalite Japonesa (Espécie)/imunologia , Encefalite Japonesa/prevenção & controle , Endopeptidases/metabolismo , Vacinas contra Encefalite Japonesa/administração & dosagem , Potexvirus/enzimologia , Vírion/enzimologia , Aminoaciltransferases/genética , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Proteínas de Bactérias/genética , Linhagem Celular , Cisteína Endopeptidases/genética , Modelos Animais de Doenças , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/sangue , Encefalite Japonesa/imunologia , Encefalite Japonesa/virologia , Endopeptidases/genética , Escherichia coli/genética , Escherichia coli/imunologia , Escherichia coli/metabolismo , Feminino , Vetores Genéticos , Imunogenicidade da Vacina , Vacinas contra Encefalite Japonesa/genética , Vacinas contra Encefalite Japonesa/imunologia , Camundongos Endogâmicos BALB C , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Potexvirus/genética , Potexvirus/imunologia , /imunologia , Vírion/genética , Vírion/imunologia
15.
Viruses ; 13(11)2021 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-34835042

RESUMO

The HIV-1 envelope glycoprotein (Env) is synthesized in the endoplasmic reticulum as a trimeric gp160 precursor, which requires proteolytic cleavage by a cellular furin protease to mediate virus-cell fusion. Env is conformationally flexible but controls its transition from the unbound "closed" conformation (State 1) to downstream CD4-bound conformations (States 2/3), which are required for fusion. In particular, HIV-1 has evolved several mechanisms that reduce the premature "opening" of Env which exposes highly conserved epitopes recognized by non-neutralizing antibodies (nnAbs) capable of mediating antibody-dependent cellular cytotoxicity (ADCC). Env cleavage decreases its conformational transitions favoring the adoption of the "closed" conformation. Here we altered the gp160 furin cleavage site to impair Env cleavage and to examine its impact on ADCC responses mediated by plasma from HIV-1-infected individuals. We found that infected primary CD4+ T cells expressing uncleaved, but not wildtype, Env are efficiently recognized by nnAbs and become highly susceptible to ADCC responses mediated by plasma from HIV-1-infected individuals. Thus, HIV-1 limits the exposure of uncleaved Env at the surface of HIV-1-infected cells at least in part to escape ADCC responses.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Motivos de Aminoácidos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Membrana Celular/metabolismo , Anticorpos Anti-HIV/imunologia , Proteína gp160 do Envelope de HIV/química , Proteína gp160 do Envelope de HIV/genética , Proteína gp160 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Humanos , Mutação , Conformação Proteica , Proteólise , Vírion/imunologia , Vírion/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
16.
Virus Res ; 305: 198555, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34487766

RESUMO

Inactivated viral preparations are important resources in vaccine and antisera industry. Of the many vaccines that are being developed against COVID-19, inactivated whole-virus vaccines are also considered effective. ß-propiolactone (BPL) is a widely used chemical inactivator of several viruses. Here, we analyze various concentrations of BPL to effectively inactivate SARS-CoV-2 and their effects on the biochemical properties of the virion particles. BPL at 1:2000 (v/v) concentrations effectively inactivated SARS-CoV-2. However, higher BPL concentrations resulted in the loss of both protein content as well as the antigenic integrity of the structural proteins. Higher concentrations also caused substantial aggregation of the virion particles possibly resulting in insufficient inactivation, and a loss in antigenic potential. We also identify that the viral RNA content in the culture supernatants can be a direct indicator of their antigenic content. Our findings may have important implications in the vaccine and antisera industry during COVID-19 pandemic.


Assuntos
Antivirais/farmacologia , Vacinas contra COVID-19/química , Propiolactona/farmacologia , SARS-CoV-2/efeitos dos fármacos , Vírion/efeitos dos fármacos , Inativação de Vírus/efeitos dos fármacos , Animais , Antígenos Virais/química , Antígenos Virais/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Chlorocebus aethiops , Floculação/efeitos dos fármacos , Humanos , Soros Imunes/química , RNA Viral/química , RNA Viral/imunologia , SARS-CoV-2/química , SARS-CoV-2/imunologia , Vacinas de Produtos Inativados , Células Vero , Vírion/química , Vírion/imunologia
17.
J Gen Virol ; 102(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34546870

RESUMO

Tick-borne encephalitis virus (TBEV), a member of the genus Flavivirus, is common in Europe and Asia and causes a severe disease of the central nervous system. A promising approach in the development of therapy for TBEV infection is the search for small molecule antivirals targeting the flavivirus envelope protein E, particularly its ß-n-octyl-d-glucoside binding pocket (ß-OG pocket). However, experimental studies of candidate antivirals may be complicated by varying amounts and different forms of the protein E in the virus samples. Viral particles with different conformations and arrangements of the protein E are produced during the replication cycle of flaviviruses, including mature, partially mature, and immature forms, as well as subviral particles lacking genomic RNA. The immature forms are known to be abundant in the viral population. We obtained immature virion preparations of TBEV, characterized them by RT-qPCR, and assessed in vivo and in vitro infectivity of the residual mature virions in the immature virus samples. Analysis of the ß-OG pocket structure on the immature virions confirmed the possibility of binding of adamantylmethyl esters of 5-aminoisoxazole-3-carboxylic acid in the pocket. We demonstrated that the antiviral activity of these compounds in plaque reduction assay is significantly reduced in the presence of immature TBEV particles.


Assuntos
Adamantano/farmacologia , Antivirais/farmacologia , Vírus da Encefalite Transmitidos por Carrapatos/efeitos dos fármacos , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Encefalite Transmitida por Carrapatos/virologia , Isoxazóis/farmacologia , Vírion/fisiologia , Adamantano/metabolismo , Animais , Antivirais/metabolismo , Linhagem Celular , Vírus da Encefalite Transmitidos por Carrapatos/crescimento & desenvolvimento , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Glucosídeos/metabolismo , Isoxazóis/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Suínos , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Ensaio de Placa Viral , Vírion/imunologia , Vírion/patogenicidade , Vírion/ultraestrutura
18.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445789

RESUMO

The SARS-CoV-2 pseudovirus is a commonly used strategy that mimics certain biological functions of the authentic virus by relying on biological legitimacy at the molecular level. Despite the fact that spike (S), envelope (E), and membrane (M) proteins together wrap up the SARS-CoV-2 virion, most of the reported pseudotype viruses consist of only the S protein. Here, we report that the presence of E and M increased the virion infectivity by promoting the S protein priming. The S, E, and M (SEM)-coated pseudovirion is spherical, containing crown-like spikes on the surface. Both S and SEM pseudoviruses packaged the same amounts of viral RNA, but the SEM virus bound more efficiently to cells stably expressing the viral receptor human angiotensin-converting enzyme II (hACE2) and became more infectious. Using this SEM pseudovirus, we examined the infectivity and antigenic properties of the natural SARS-CoV-2 variants. We showed that some variants have higher infectivity than the original virus and that some render the neutralizing plasma with lower potency. These studies thus revealed possible mechanisms of the dissemination advantage of these variants. Hence, the SEM pseudovirion provides a useful tool to evaluate the viral infectivity and capability of convalescent sera in neutralizing specific SARS-CoV-2 S dominant variants.


Assuntos
Anticorpos Antivirais/metabolismo , COVID-19/imunologia , Proteínas do Envelope de Coronavírus/metabolismo , SARS-CoV-2/patogenicidade , Proteínas da Matriz Viral/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Antivirais/imunologia , COVID-19/sangue , COVID-19/virologia , Linhagem Celular , Proteínas do Envelope de Coronavírus/genética , Proteínas do Envelope de Coronavírus/imunologia , Proteínas do Envelope de Coronavírus/ultraestrutura , Cricetinae , Humanos , Microscopia Eletrônica de Transmissão , Mutação , Testes de Neutralização , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia , Proteínas da Matriz Viral/ultraestrutura , Vírion/genética , Vírion/imunologia , Vírion/metabolismo , Vírion/ultraestrutura
19.
J Neuromuscul Dis ; 8(5): 815-825, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366365

RESUMO

BACKGROUND: Duchenne Muscular Dystrophy (DMD) is one of the most common muscular dystrophies, caused by mutated forms of the dystrophin gene. Currently, the only treatment available is symptoms management. Novel approximations are trying to treat these patients with gene therapy, namely, using viral vectors. However, these vectors can be recognized by the immune system decreasing their therapeutic activity and making impossible a multidose treatment due to the induction of the humoral immunity following the first dose. OBJECTIVE: Our objective is to demonstrate the feasibility of using a hybrid vector to avoid immune clearance, based on the electrostatic coating of adeno-associated virus (AAVs) vectors with our proprietary polymers. METHODS: We coated model adeno-associated virus vectors by electrostatic interaction of our cationic poly (beta aminoester) polymers with the viral anionic capsid and characterized biophysical properties. Once the nanoformulations were designed, we studied their in vivo biodistribution by bioluminescence analysis and we finally studied the capacity of the polymers as potential coatings to avoid antibody neutralization. RESULTS: We tested two polymer combinations and we demonstrated the need for poly(ethylene glycol) addition to avoid vector aggregation after coating. In vivo biodistribution studies demonstrated that viral particles are located in the liver (short times) and also in muscles (long times), the target organ. However, we did not achieve complete antibody neutralization shielding using this electrostatic coating. CONCLUSIONS: The null hypothesis stands: although it is feasible to coat viral particles by electrostatic interaction with a proprietary polymer, this strategy is not appropriate for AAVs due to their small size, so other alternatives are required as a novel treatment for DMD patients.


Assuntos
Terapia Genética/métodos , Distrofia Muscular de Duchenne/imunologia , Eletricidade Estática , Vírion/imunologia , Animais , Dependovirus/imunologia , Distrofina/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos , Camundongos , Distribuição Tecidual
20.
Front Immunol ; 12: 669103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367135

RESUMO

Targeted therapeutics for the treatment of coronavirus disease 2019 (COVID-19), especially severe cases, are currently lacking. As macrophages have unique effector functions as a first-line defense against invading pathogens, we genetically armed human macrophages with chimeric antigen receptors (CARs) to reprogram their phagocytic activity against SARS-CoV-2. After investigation of CAR constructs with different intracellular receptor domains, we found that although cytosolic domains from MERTK (CARMERTK) did not trigger antigen-specific cellular phagocytosis or killing effects, unlike those from MEGF10, FcRγ and CD3ζ did, these CARs all mediated similar SARS-CoV-2 clearance in vitro. Notably, we showed that CARMERTK macrophages reduced the virion load without upregulation of proinflammatory cytokine expression. These results suggest that CARMERTK drives an 'immunologically silent' scavenger effect in macrophages and pave the way for further investigation of CARs for the treatment of individuals with COVID-19, particularly those with severe cases at a high risk of hyperinflammation.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/imunologia , Imunoterapia Adotiva , Macrófagos/imunologia , SARS-CoV-2/imunologia , Vírion/imunologia , Animais , COVID-19/genética , Chlorocebus aethiops , Humanos , Fagocitose , SARS-CoV-2/genética , Células THP-1 , Células Vero , Vírion/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...